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bin-stationary conjugate free-convective heat 
transfer in horizontal cylindrical coaxial channels 

P. M. KOLESNIKOV and V. E. BUBNOVICH 
Luikov Heat and Mass Transfer Institute, 220728, Minsk, U.S.S.R. 

Abstract-A conjugate problem of natural convection in a horizontal annulus is solved numerically; a 
comparison of the solution with non-conjugate problems is given; the effect of walls on heat transfer in a 

channel is shown. 

‘I. lNTRODUCTlON 

THE STUDY of heat transfer in coaxial cylindrical chan- 
nels is of great importance For calculation of different 
heat exchangers, apparatus for chemical engineering 
technology, plasmatrons~ plasma accelerators, radio- 
electronic devices, cryogenic power transmission lines, 
solar energy converters, etc. 

The processes of heat and mass transfer by laminar 
free convection between horizontal isothermal con- 
centric cylinder5 were studied theoretically [I? 21, by 
numerical methods [3,4] and ex~~m~ntally [S, 61. In 
the ~ve~hel~ng majority of the above-mentioned 
papers stationary solutions of the problem are sug- 
gested ; non-stationary problems were the concern of 
refs. [7,8]. Turbulent free convection in a gap between 
horizontal concentric cylinders was considered in ref. 
[4]. A very detailed review of the literature on natural 
convection in an annulus under various thermal 
boundary conditions is given in refs. 17,991 l]. 

A conjugate formulation of the problem of free 
convection in annuli was studied to a lesser extent in 
refs. [I I-131. In ref. 113) a stationary conjugate prob- 
lem of natural convection in a gap between a coaxial 
hollow cylinder and a cylindrical rod is treated by 
asymptotic methods. The mathematical simulation of 
three- and two-dimensional conjugate problems of 
natural convection and corresponding conjugation 
criteria were the concern of refs. [14-161. 

This paper considers the unsteady-state conjugate 
heat transfer by natural convection between hori- 
zontal waxiat hollow cylinders, comparison is drawn 
between similar problems in non-conjugate formu- 
lation, a considerable influence of walls on heat trans- 
fer in channels is shown. 

2. BASIC EQUA-ITCINS AND PARAMETERS OF 
WE PROBLEM 

Making use of the cylindrical system of coordinates, 
assume that the angular coordinate c) is measured 
from the vertical directed downwards (# = 0) and the 
problem is symmetric about a vertical plane passing 

through the axis of the cylinders [5], therefore, con- 
sideration will be confmed to the range 0 < 4 < at 
(Fig. 1). 

Assuming the thermophysical properties of an 
incompressible fluid to be constant, consider non- 
stationary convection in the space limited by two 
coaxial cylindrical tubes. 

Equations of heat and mass transfer in the fluid and 
tube walls have the form : 

continuity equation 

motion equation5 

equation of energy in the fluid 

equation of thermal transfer in the walls 
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NOMENCLATURE 

n thermal diffusivity 1: dimensionless angular velocity 

li ratio of thermal diffusivities, u, /a2 component, cmri/&?l. 

h’ inner cylinder wall thickness 

h dimensionless wall thickness of inner Greek symbols 

cyhnder B coefficient of thermal expansion of Aaid 

L’) outer cyfinder wall thickness PI ratio of radii, r,/r; 

( dimensionless wall thickness of outer (9 dimensionless temperature, 

cylinder (T- r,,)i(r,-- TO) 
Fe Fourier number, U~I/F~ i thermal conductivity 

Y gravity acceleration ,Y thermal conductivity ratio, Lz/pL, 

C;ri Grashof number, fl,q( ri - TO)?;’ /v2 1’ coefficient of kinematic viscosity 

GY,, fl.q( r, - T” )Y,: IV’ I(’ fluid density 

IiF Sg(T,-T”)(r”--r,)5/1,? 

; 

relaxation parameter 

/I step of a spatial grid (AR, A$) polar coordinate 

NU Nusselt number Y s&-cam function 

.ni;u mean Nusselt number $ dimensionless stream function. Y/a, 

PP Prandtf number St vorticily 

P fluid pressure w dimensionless vorticity, sZrli:az. 

Ru Rayleigh number, Gr Pr 

R dimensionless radial coordinate Subscripts 

r radial coordinate i inner cylinder 

t time o outer cylinder 

T temperature 1 Wdi 

u dimensionless radial velocity ~ompont?nt, 2 fluid 

i’,.I’, ial k3.i spatial indices of grid nodes 

I:, radial velocity component f2 number of time layer. 

l’4, angular velocity component 

FK;. I. Channel geometry 

The initial conditions will be assumed as follows : 

1’,. = I?, = 0, T1 = Tz= T, att=O. 161 

The boundary conditions at the fluid-wall interface 

conjugation conditions 

It is assumed on the line of symmetry that 

On the outer boundaries of the wafls the boundary 
conditions of the first kind are prescribed 

T, = I: atr=r,-h and T, = ‘$> at t’ = r;, i-c’ 

with T, > T,,. 

On the introduction 
defined by the relations 

(3V 

(9) 

of the stream function Y, 

continuity equation (1) is satisfied identically. 
~u~t~plyjn~ equation (3) by I, then p~rform~!l~ the 

are : operations ~I~~)(~~~~) and (c?/i?r) on equations (2) 

no-slip condition 
and (31, respectively, and subs&acting one equation 
from the other, it is possible to eliminate the pressure 

~1, = ~7,~ = 0 at r = r, and r = r,, : f7) variable. Then the basic equations for the dimen- 
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sionless stream function, velocity and. temperatures 
will take the form 

w = -V’$ (11) 

g+u!!f+iw=p,v”o 
aR R a4 

+ Gr Pr2 

(13) 

where the dimensionless quantities are introduced 

R = r/r,, w = C&~/u,, 

II, = y/a,, 0 = (T- Towi- To), 

Fo = a2tjrf, u = v,rila2, 

v = v4ri /a,, n” = a, /a2. (15) 

The initial and boundary conditions are written here 
as 

$=w=%,=~~=O atFo=O (16) 

ae, ao2 
l+k”=s=v=o 

along f#~ = 0, rc (symmetry line) (17) 

p2 _ a4 
0, = 82, aR aR 

IC/=at,b/aR=o atR=l 
(inner 
cylinder) (18) 

,!?,=I atR=I-bJ 

8, = e2, 
(outer 

$ = a$jaR = 0 at R = q cylinder). (19) 

0, =0 atR=q+cJ 

The boundary condition for vorticity on the walls 
will be taken in the form [9, 171 

The set of equations (1 I)-(14) and boundary con- 
ditions (16)-(20) incorporate the following dimen- 
sionless parameters : 

(1) the Prandtl number Pr = v/a2 ; 
(2) the Grashof number Gri = g/?( T - To)rf/v2 ; 
(3) the ratio between the thermal conductivities of 

the fluid and the wall under the conjugation con- 
ditions I= 1,/i,; 

(4) the ratio between the thermal conductivities of 
the fluid and the wall in equation (14) 6 = a, /a2 ; 

(5) the outer to the inner radius ratio (r,/ri) which 
characterizes the size of the gap in the channel 

v = r,lr,; 
(6) the relative thickness of the channel walls 

b = b’ir,, c = c’/ri. 

3. ALGORITHM FOR THE CONJUGATE 

PROBLEM SOLUTION 

The system of equations (1 l)-( 14) with initial con- 
dition (16) and boundary conditions (17)-(20) was 
solved numerically by the alternating-direction 
method using the implicit finite-difference scheme 
[17]. The space grid was selected to be uniform 
(A4 = 7c/20) in the direction of 4, while in the r- 
direction it was divided into three regions with differ- 
ent constant steps. The mesh steps were taken smaller 
near the wall than in the centre of the annulus. 

The convective terms were approximated by non- 
symmetric difference relations with the so-called 
‘opposite-to-flow orientation’ [17]. 

At the boundaries of the region, the first- and 
second-order partial derivatives were determined, 
when making the approximation towards the centre 
region, from the following relations : 

af -3fo+4f,-fz 
an’ 2h 

+ U(h’) (21) 

a2f -7fo+8fL-S2 3 
jg= 2h2 

+O(h2) 
o 

where 

n = (4,R), f = hkw2h 

The conditions for the conjugation of the tem- 
peratures on the inner and outer cylinders were trans- 
formed, respectively, into the difference equations 

eY!fj = en,,, e;kj-t%-l Xe%j+I-e%ij 

ARj_, = AR, 

atR=I 

-O~~j-t?~j_, e;,+,-e;, 

Gkj = elkj, 1 AR,_, = 

ARj 

at R = y. (23) 

The elliptic equation (11) was solved by the time- 
dependent technique and therefore the relaxation par- 
ameter z was introduced 

(24) 

and equation (11) became parabolic. It was solved by 
the alternating-direction method [ 171; the factorized 
terms in the directions R and C$ were closed by equa- 
tions (21) and (22), respectively. Iterations on any 
time step stop after the following convergence cri- 
terion is satisfied : 
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The number of iterations decreased rapidly from 25 
to 30 at the initial instants of time to 24 with the 
steady-state regime being approached. Depending on 
the numbers Pr, Gr and ‘1, each interval of time steps 
constitutes from 200 to 300. During the successive 
solution of equations (11) and (12) the residual in the 
boundary nodes was eliminated following the numeri- 
cal scheme in ref. [18]. At the prescribed Gr, Pr, ye, 1, 

ii, b, c and initial distributions of 8,, Q,, $, o, u 
and v, calculations on one time step incorporate the 
following operations : first, equations (1 1)-( 14) are 
solved successively by the above-mentioned method : 
then from equations (10) the velocity field is found in 
terms of central differences, and from [3, IO] 

the local Nusselt numbers are determined for the sur- 
faces of the inner and outer cylinders, respectively, 
and, finally, with the aid of the expressions 

Nui d4, (27) 

mean Nusselt numbers are calculated for each cylin- 
der. The integrals indicated were found numerically 
using the Simpson rule. The total Nusselt number Nu 
was determined as the arithmetic mean of Nu, and 

NU,. 
The transitions from the solution of the conjugate 

to a non-conjugate problem in the method considered 

was made by the limiting transition 

/L 0. 

Moreover, a separate programme was used for solving 
non-conjugate problems to check the computation. 

4. BASIC RESULTS. COMPARISON BETWEEN 
CONJUGATE AND NON-CONJUGATE 

PROBLEMS 

In order to reveal the effect of channel walls on heat 
transfer and to compare the solutions of conjugate 

and non-conjugate problems and also to verify the 
reliability of a numerical algorithm, calculations were 
made for the following variants convenient for com- 
parison with earlier works [l, 3, IO] : (1) Pr = 

0.02, r) = 5, Gr, = 200; (2) Pr = 0.7, q = 1.57, 
Ra, = 14420; (3) Pr = 0.7: (a) q = 1.5, Gr = 4850; 

FIG. 2. Stream lines for the non-conjugate (a) and conjugate 
(b) problems, respectively. 

-6.0L 

FIG. 3. Radial velocity component : ~~ -- -- --, conjugate prob- 
lem; ---, non-conjugate problem. 

(b) ~=2, Gr=lOOOO; (c) ~=2, Gr-26600: (d) 
g = 2, Gr = 38800. 

For the above parameters equations (I I)-( 14) were 
solved in both conjugate and non-conjugate for- 
mulations The analysis of the results showed that 
with 1-t 0 these solutions coincided. Moreover, the 
temperature profiles, just as the flow structure, which 
were found from the solutions obtained, turned to be 
identical in character with the results of refs. [ 1, 3. IO]. 
The greatest discrepancy was found when comparing 
with the solution obtained in ref. [3], for local Nusselt 
numbers near the regions C#I = 0’ and 180”, it did not 
exceed 12%. This difference is due to the fact that at 
Grashof numbers close to transient ones, condition 
(25) does not furnish the estimation of the real error 
when solving the Poisson equation. Thus, a conjugate 
problem was solved with the parameters: Pr = 0.7, 
Gri = 10 000, q = 2, d = 2.0,x = 0.4, b = c = 0.2. The 
data on hydrodynamics (Figs. 224) and heat transfer 
(Figs. 5-9) resulting from the solution of this problem, 
were then compared with the corresponding solution 
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Fro. 4. An&z velocity component: ---? conjugate 
probEem ; -, nowxmjttg&te problem. 

Fto. 5 Predicted isotherms for the non-conjugate [a) and 
conjugate (b) problems, respectively : 1, i3 = O-9 ; 2, 0.8 ; 3, 

0.7 ; 4,Q.S ; 5, @.4; q0.3 ; 7,o.t ~ 

The measure of the motion intensity of an incom- 
pressible fluid is provided by the maximum absolute 
value of the stream function, with other conditions 
remaining constant. Making use of this criterion it 
can be seen from Fig. 2 that the fluid motion intensity 
found from the non-conjugate problem solution 

FE. 6. Local Nusselt numbers: ---1, conjugate prob- 
lem ; -----) uon-conjugate problem. 

exceeds the analogous characteristics of the conjugate 
problem hy a factor of 1.39. In this case the vortex 
centre in the conjugate problem shifted upwards by 
A+ w 6” with respect to the vortex centre in the non- 
conjugate problem, Figures 3 and 4 contain com- 
parison between the radial and angnlar velocity com- 
ponents in the sections 4 = 54”: IOg” and 154”. It is 
seen -from the figure that allowing for the thermal 
conductivity of the channel walls reduces the angular 
and radial velocities of the fluid non-unifarmly over 
the entire channel. Thus, in the fluid layer adjacent to 
the inner cylinder the greatest differences in the velo- 
city u are observed in the lower portion of the annulus 
(0” E$ 4 < 140”), and conversely, in the fluid layer at 
the opposite wall--in the upper portion of the channel 
(75” G 4 < f%Y). 

A comparison of the heat transfer data is given 
in Figs S--9, The transference of thermal boundary 
co~~tions from the inner to the outer surfaces of the 
channel walls in the conjugate problem fed to the 
redist~b~t~~~ of isotherms in the channel (Fig. 5) 
and, naturally, to a change in the distribution of local 
Nusselt numbers on both walls (Fig. 6). On the inner 
cylinder (Pig. 6), within the range 140° < # < lgO”, 
the local Nusselt numbers iVu, for the conjugate and 
non-conjugaie problems nearly coincide and differ 
~nsi~i~can~y ; with a decrease OF tp from 140’ to 0” 
the difference between them progressively increases 
and at d, = 0” they differ by 70% The reverse is true 
for the case on the outer cyhnder: over the portion 
0” 6 4 < 75” they diFfer slightly, whereas with an 
increase of 4 from 75” to IgO” the ~~agre~m~t 
becomes increasingly pronoun~d. In Figs. 7(a) and 
(b) the temperature distributions along the radii are 
presented for the non-conjugate and conjugate prob- 
lems, respectively. These graphs show that the course 
of the temperature curves and their slope to the axes 
R and 6 differ greatly for both problems within the 
ranges t < R & 1.2 and 1 .X < R < 2.0. Moreover, the 
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0.6 

8 

0.4 

0.2 

0 
0 

FIG. 7. Temperature distribution along a radius for the non-conjugate (a) and conjugate (b) problems, 
respectively : 1, 0” ; 2, 72” ; 3, 90’ ; 4, 108” ; 5. 126”; 6, 144’ ; 7, 180”. 

rp fdeg) 

FIG. 8. Temperature distribution over the interfaces between 
the walls and the fluid for inner (I ] and outer (2,) cylinders, 

respectively. 

flattened portions of the curves 4 = 126”, 1.W and 
180” of the non-conjugate problem are located above 
the analogous curves of the conjugate problem, while 
for the curves C$ = 90”, 72” and 0” the reverse phenom- 
enon is observed. Figure 8 illustrates the distribution 
of the temperature 8, found from the conjugate prob- 
lem solution, along the interface surface between the 
fluid and the inner and outer cylinders. It is seen that 
while within the range 35” < Cp < 160” both curves 
have nearly the same angles of inclination to the axes 

FO 

FIG. 9. Time dependence of the mean numbers Nu, and ___ 
Nu, for the non-conjugate (1) and conjugate (2) problems. 

respectively. 

(i, and 0, then near the regions # = 0” and 180’ these 
angles differ greatly. 

Figure 9 shows the time history of mean Nusselt 
numbers on both channel walls. The data on the 
steady-state heat transfer regimes makes it possible 
to assert that allowance for the finite thickness of the 
channel walls and conjugation of temperature fields 
at the tluid-wall interface led to a decrease of % by a 
factor of 1.42. Moreover, the curve %&+I) for the 
conjugate problem in contrast to the non-conjugate 
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one has a maximum point and tends to zero as between horizontal concentric cylinders, J. Fluid Mech. 
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74, 695-719 (1976). 

7. L. C. Charrier-Mojtabi, A, Mojtabi and J. P. Calta” 
girone, Numerical solution of a flow due to natural con- 
vection in horizontal syndical annuli, Trm. ASME, 
J. Heat Transfer Ha(l), 199-201 (1979). 

5. CONCLUSIONS 8. B. E. Vasilik. B. 8. Petrazhitskv, M. A. Rozanov and 

The problem of conjugate unstead~state natural 
convection in a gap between horizontal coaxial cylin- 
drical tubes is solved using an implicit scheme by a 
numerical method based on the factorization for w, 3/ 
and B successively along the radius R and then over 
the angle #. The numerical solution makes it possible 
to analyse in detail the patterns of stream lines and 
isotherms in the fluid and also the course of isotherms 
in channel walls. The applied numerical method can 
be extended to the problems of unsteady-state free 
convection with different thermaf boundary con- 
ditions on the channel wails with different geometrical 
relationships. 

The above calculations show that taking into 
account the channel wall greatly affects the natural 
convection heat transfer. 

The study of the influence of such parameters as & 
a”, h and c on the solution of the conjugate problem 
of natural convection in an annulus was made earlier 
in ref. 1191. 
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TRANSFERT THERMIQUE CONJUGUE DE CONVECTION LIBRE VARlABLE DANS 
DES ESPACES ANNULAIRES HORIZONTAUX 

RbumC-On resout un probldme conjugue de convection naturelle dans un espace annulaire horizontal. 
Une comparaison avec la solution du problkne non conjugut est doanke. On montre les effets de paroi 

sur le transfert thermique. 

INSTA~GN~RER KONJUGIERTER W~RME~BER~ANG DURCH FREIB 
KONVEKTION IN W~GERECHTBN KGA~LEN ~LI~RISCHEN KANALEN 

~~~~fa~~E~ konjugiertes Problem der ~t~lichen Konvektion in einem waa~~hten 
Ringraum wird numerisch untersucht. Die Liisung wird mit derjenigen fiir den nicht-konjugierten Fall 

verglichen. Der Wandeffekt aufden W~~e~~gang in einem Kmal wird gezeigt. 
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